Multidisciplinary Rapid Prototyping
Transform your ideas from concepts to reality. AS&C delivers robustly documented designs, production quality prototypes and small production runs. Drawing upon multiple disciplines, the design and prototyping processes are interactive and collaborative.

CAD Line Rendering
CAD Raytracing
Functional Prototype
Rapid Prototyping Example
A local museum featured a Periodic Table of the Elements display where gaseous samples were illuminated as a plasma. These samples proved uniquely unstable over a relatively short period time; rapidly reducing in brightness, flickering, failure to ignite and with some overheating.
AS&C was asked to provide examples of a robust plasma illumination system mitigating the aforementioned issues. The new system must have a longer lifetime, be consistent in shape and form, offer convenient maintenance and replacement, and be aesthetically pleasing. A solution was urgent due to the Museum's event schedule.
The Problem: Unstable Illumination

Failing Tubes

Prototype Replacement
Goal: Improve Illumination Stability
Create Authentic, Lasting, Elemental Gas Dispalays:
1. Identify critical components and failure mechanisms of original system.
2. Research a range of illumination mechanisms and phenomena.
3. Source novel components options and quantify their ad/disadvantages.
4. Empirically determine the best design concept through physical testing.
5. Develop aesthetic presentation - functionality, durability and beauty.
5. Create a prototype(s) based upon the chosen design concepts.
6. Qualitatively assess prototype performance against previous installation.
7. Optimize performance as needed and document these improvements.
8. At the right point, freeze the design and create a design package.
9. Create, install, debuge, tweak and enjoy the new plasma displays.
Identify Critical Component(s)
After thorough observation of system behavior, determine weaknesses and failure mechanisms - both technical and aesthetic. Here, contributing factors included gasses' varying properties, tube form variation, and thermal issues. A consistent and simple vessel geometry would significantly reduce many of these issues.
A spherical ampoule would allow for:
1. Identical electrode design, energy transfer and electric field shape.
2. Consistent electrode placement.
3. Simplified bulb replacement.
4. Power supply setting would dominate brightness control (Brightness was previously also affected by tube geometry; electric field shape, neighboring conductors and circuitry)

60mm Hand Blown Ampoules from Artist in Poland

Bulb Testing; Power Settings, Electrode Geometry and Placement
Engineer a Solution Leveraging Test Data

Prototype Concept

Prototype CAD Design in SolidWorks
Create Prototypes:



Electrode Design Study, AS&C Etched and Form-Fitting Domed Electrodes


SLA 3D Printed Bases, Punched Electrodes and Foam "Springs"

Base Electrode Subassemblies


Electrode Tower Kit: Designed in SolidWorks, Laser Cut in Black Acrylic
